Nonparametric Bayesian Multiple Imputation for Missing Data Due to Mid-study Switching of Measurement Methods
نویسندگان
چکیده
Investigators often change how variables are measured during the middle of data collection, for example in hopes of obtaining greater accuracy or reducing costs. The resulting data comprise sets of observations measured on two (or more) different scales, which complicates interpretation and can create bias in analyses that rely directly on the differentially measured variables. We develop approaches for handling mid-study changes in measurement for settings in the absence of calibration data, i.e., no subjects are measured on both (all) scales, based on multiple imputation. This setting creates a seemingly insurmountable problem for multiple imputation: since the measurements never appear jointly, there is no information in the data about ∗Lane F. Burgette is an Associate Statistician at the RAND Corporation, Arlington, VA 22202-5050 ([email protected]) and Jerome P. Reiter ([email protected]) is Mrs. Alexander Hehmeyer Associate Professor, Department of Statistical Science, Duke University, Durham, NC 27708-0251. The authors wish to thank Howard Chang, Sharon Edwards, Marie Lynn Miranda, Geeta Swamy, three anonymous referees, an Associate Editor, and the Editor for helpful comments. L.F. Burgette was a Postdoctoral Research Associate in the Department of Statistical Science at Duke University when this research was conducted. This research was funded by Environmental Protection Agency grant R833293.
منابع مشابه
چند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملکاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی
Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملInfluence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons
Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011